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Abstract. Machine learning (ML) has emerged as a powerful tool for detecting and mitigating malware, ad-

dressing the evolving challenges in cybersecurity. This paper presents a comprehensive overview of ML techniques

applied to Windows Portable Executable (PE) malware detection, spanning from theoretical foundations to prac-

tical implementations. Theoretical underpinnings such as feature engineering, model selection, and evaluation

metrics are explored, followed by discussions on practical aspects including data preprocessing, model train-

ing, and deployment considerations. The experimental setup using the Dataiku platform is detailed, and seven

ML models are evaluated on both binary and multiclass classification tasks before and after applying Principal

Component Analysis (PCA). The performance and interpretability of these models are analyzed using SHAP

(Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations). By synthesizing

insights from theory and practice, this paper aims to provide a comprehensive understanding of ML approaches

for Windows PE malware detection and guide future advancements in cybersecurity.
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1 Introduction

Malware’s impact on individuals, organizations, and society is significant and multifaceted.
Cyberattacks, including inserting ads into websites and stealing confidential data, often involve
malicious software such as viruses, worms, trojans, and ransomware (Adnaan et al., 2023; Baghi-
rov, 2023; Mbunge et al., 2023). These are meant to disrupt, compromise, or gain unauthorized
access to computer systems (Jamar et al., 2017), leading to substantial financial, operational,
and reputational harm. For individuals, malware poses risks such as identity theft and finan-
cial loss, while organizations face disrupted operations (Youssef et al., 2022), data breaches, and
potential legal consequences. Societal impacts include critical infrastructure disruption, compro-
mised national security, and essential service disruption. As malware evolves, robust detection
and prevention measures become increasingly crucial to safeguard the digital landscape from
its wide-ranging effects. According to the 2024 report from Malwarebytes (2024), ransomware
attacks increased by 68%, with malware constituting 11% of detections on Macs. The AV-TEST
Institute reports over 450,000 new instances of malicious programs and potentially unwanted
applications daily.
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Malware, a persistent and ever-evolving cyber threat, has necessitated the adoption of vari-
ous protective measures (Aboaoja et al., 2022). Cybersecurity experts employ diverse strategies
to detect and mitigate its impact, including static and dynamic analysis methods. Static anal-
ysis involves examining code characteristics without execution, enabling quick scanning of large
file volumes. However, it may struggle with polymorphic or obfuscated malware and yield false
positives. Dynamic analysis entails executing malware in a controlled environment to observe its
behavior in real-time, offering insights into its actual behavior but requiring significant compu-
tational resources and potentially introducing detection delays. Despite the strengths of static
and dynamic analysis, malware authors continually evolve tactics to evade detection. Future
research may focus on developing hybrid approaches, combining both methods and enhancing
the interpretability of detection models through explainable AI. Success in this innovation would
improve how detecting and combating malicious software are approached. The following are the
main contributions of this work:

• Evaluation of machine learning models on both binary and multiclass datasets, with and
without PCA

• Insights into feature importance and model interpretability

• Practical considerations for real-world deployment

• Identification of future research directions

Our paper is arranged as follows: Section 2 provides the theoretical foundation and fundamental
concepts concerning malware. Section 3 conducts a review of relevant literature. Section 4
outlines the experimental setup and analysis. Lastly, we explain our results in Section 5 and
conclude the paper in Section 6.

2 Background and basic concepts

2.1 Malware Obfuscation Methods

Malware obfuscation is like a cloak that cybercriminals use to hide their malicious software
from antivirus scanners (Chen et al., 2021). It’s a sneaky tactic that helps them slip past secu-
rity defenses. Some examples of obfuscation techniques are encryption, compression, encoding,
polymorphism, metamorphism, and code injection (You and Yim, 2010). Common malware
obfuscation techniques has been shown in Table 1.

Table 1: Malware Obfuscation Methods

Method Description

Encryption The process of transforming data (plaintext) to make it unreadable except to those possessing a
key (Li, 2009).

Compression Reduces data size by encoding it in a more efficient representation, minimizing file sizes and evading
detection (Huang et al., 2024).

Encoding Transforms data into another format using a scheme such as Base64, obscuring content and making
it harder to detect.

Polymorphism Modifies its code each time it infects a new host while maintaining the same functionality, making
it difficult for antivirus software to identify and detect (Selamat et al., 2016).

Oligomorphism Shares similarities with polymorphic malware but has limited variations, producing a finite number
of distinct forms (You and Yim, 2010).

Metamorphism Changes its code and underlying structure, making it even more challenging to detect and analyze
(Mirzazadeh et al., 2015).

Code Injection Involves inserting malicious code into a legitimate program or process to execute unauthorized
actions, bypassing security measures and gaining unauthorized access to systems (Erfina et al.,
2023).
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As outlined by Huidobro et al. (2017), deploying some of these obfuscation techniques has
become increasingly prevalent, particularly in updating malware. Automated obfuscation meth-
ods have emerged as a preferred choice, offering cybercriminals a reliable and efficient means of
perpetuating their illicit activities and making their malware updates harder to detect.

2.2 Windows PE File Structure

The term ”Portable Executable” denotes the format’s adaptability and versatility across vari-
ous architectures, making it a foundational element in Windows-based systems (Microsoft Build,
2024). PE files consist of headers and sections that play vital roles in the execution and func-
tionality of applications, libraries, and dynamically linked modules. The file structure begins
with the DOS header, followed by the PE header, which contains essential metadata like the
optional header and section table. The optional header provides information about the file’s ar-
chitecture and entry point, while the section table lists the characteristics and locations of each
section. The sections include the code section, housing executable instructions, the data section
for initialized data, the resource section for non-executable resources, and the import section
for external functions and libraries. Understanding these components helps analysts detect and
mitigate security threats. Structure of Windows PE file has been shown in Figure 1.

Figure 1: Windows PE file structure

3 Literature Review

Detecting and analyzing malicious code in PE files remains an essential and ongoing cyberse-
curity challenge. The continuous evolution of malware necessitates the development of more
advanced and adaptive detection methods. Traditional signature-based techniques, while effec-
tive in some scenarios, struggle to keep up with the rapid generation of new malware variants. To
address these limitations, researchers have increasingly turned to machine learning approaches,
which offer the potential for more dynamic and robust malware detection capabilities.

Initial efforts in malware detection predominantly relied on signature-based techniques,
where known malware signatures were used to identify threats. Although effective for known
malware, these methods are inadequate against new or obfuscated malware. To enhance de-
tection accuracy, researchers like Belaoued and Mazouzi (2016) explored Chi-Square analysis,
which, while providing statistical insights, still falls short in dynamic and real-time malware
detection scenarios.

Machine learning has emerged as a powerful tool to overcome the shortcomings of tradi-
tional methods. Various ML models have been proposed, each contributing unique advantages.
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For instance, Azeez et al. (2021) advocated for the use of ensemble learning, which combines
multiple learning models to improve accuracy and robustness. Their study utilized a dataset
of 19,611 malicious samples and demonstrated that an ensemble of fully connected dense arti-
ficial neural networks (ANN) and one-dimensional convolutional neural networks (1-D CNN),
with ExtraTrees as the final-stage classifier, achieved superior classification performance. This
ensemble method outperformed both conventional and other advanced techniques, highlighting
the potential of ensemble learning in malware detection.

Similarly, Catak et al. (2020) developed a classification method based on the behavior of
malware, utilizing API calls made on the Windows operating system. Their dataset included
various types of malicious software such as Adware, Backdoor, Downloader, Dropper, Spyware,
Trojan, Virus, and Worm. Using Long Short-Term Memory (LSTM) networks, a widely used
method for sequential data, they achieved an accuracy of up to 95% with a 0.83 F1-score. This
study demonstrated the efficacy of LSTM models in capturing the sequential nature of API call
data for malware classification.

In a novel approach, researchers Shaukat et al. (2024) employed visualization techniques
to identify malware through Windows portable executables. This framework, by eliminating
the need for traditional feature extraction, significantly reduced training costs for deep learning
models while achieving an accuracy of 99.30%. Despite its efficiency and lightweight design, the
framework’s vulnerability to adversarial attacks was highlighted by subsequent studies Imran et
al. (2024), which demonstrated how adversarial training could enhance the system’s resilience
against such threats.

The study suggested in Chen et al. (2021) addresses the challenge of obfuscation in An-
droid malware detection by employing code deobfuscation techniques to retrieve concealed in-
formation, enhancing the detection system’s effectiveness. The proposed model, incorporating
obfuscation-invariant features and interaction terms, achieves a 99.55% accuracy and a 94.61%
F1-score using the Drebin dataset. However, the use of an older dataset raises concerns about
the model’s robustness and applicability to current malware threats.

Despite the promising advancements in ML-based malware detection, significant challenges
remain. One critical issue is the system’s susceptibility to adversarial attacks, which can ma-
nipulate malware to evade detection by even the most sophisticated models. Additionally, the
integration of ML models into real-world systems requires careful consideration of data prepro-
cessing, model training, and deployment strategies to ensure optimal performance and security.

4 Experimental setup and analysis

4.1 Dataset description

The dataset comprises Windows PE samples with four distinct feature sets, each stored in a
separate CSV file (Yousuf, 2023). These feature sets provide valuable insights into the behavior
and characteristics of various malware families. The dataset is labeled, with each sample asso-
ciated with one of seven malware types or families, as well as a benign category. The sample
size for each malware type is shown in Table 2.

Table 2: Sample Size for Each Malware Type or Family

Malware Type/Family Sample Size Proportion (%)

Spyware 3699 11.9%
SnakeKeyLogger 4227 13.6%
BankingTrojan 5076 16.3%
RAT 4955 15.9%
Downloader 4643 14.9%
RedLineStealer 5022 16.1%
Benign 1877 6.0%
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The dataset features and feature size are structured as follows:

• DLLs Imported Feature Set: This feature set contains information about the Dynamic
Link Libraries (DLLs) imported by each malware sample. There are 629 features in this
set.

• API Functions Feature Set: This feature set includes details about the Application
Programming Interface (API) functions called by the malware samples. There are 792
features in this set.

• PE Header Feature Set: This feature set provides values for 52 fields extracted from
each sample’s PE header. The fields are labeled in the CSV file, offering insights into
various aspects of the PE structure, such as file size, entry point address, and section
characteristics. There are 52 features in this set.

• PE Section Feature Set: This feature set comprises values for nine fields extracted
from ten different PE sections of each sample. Similar to the PE header feature set, the
fields are labeled, providing information about the characteristics and attributes of each
PE section, such as virtual size, raw size, and entropy. There are 89 features in this set.

Overall, the combined feature set used for analysis includes 1562 features, encompassing
various attributes that provide comprehensive insights into the characteristics and behav-
iors of the malware samples.

4.2 Dataset Preprocessing

The data preprocessing section plays a pivotal role in our machine learning model. We applied
standard scaling to numerical columns, ensuring uniformity in their scales. This aids in the con-
vergence of machine learning algorithms and significantly improves model performance. We also
excluded columns with a high proportion of identical values from the dataset to mitigate poten-
tial bias and reduce computational overhead. Furthermore, we removed rows containing missing
values to maintain data integrity and prevent imputation-induced inaccuracies. These prepro-
cessing steps are not just important, they are crucial for enhancing the quality and suitability
of the dataset for subsequent machine learning model training and evaluation.

4.3 Experimental Setup

Our analysis and modeling experiments were conducted within the powerful Dataiku platform.
This integrated environment is renowned for its capabilities in advanced data analytics and
machine learning tasks. With a suite of tools and functionalities tailored for data preparation,
feature engineering, model building, and evaluation, Dataiku provided a robust ecosystem for our
research. The version utilized for this study is Dataiku 10.0.5 (licensed), with the notebook
server running version 5.4.0-dku10.0-0 and Python 3.6.8.

4.4 Applied Models and Metrics for Malware Detection

In the pursuit of effective malware detection, a variety of machine learning models have been
employed to analyze and classify malicious software. Notable models include Decision Trees,
K-Nearest Neighbors (KNN), LightGBM, Logistic Regression, Random Forests, Support Vector
Machines (SVM), and XGBoost.

The selection of these models for the interpretability analysis is grounded in their diverse
approaches to handling data, each offering unique strengths and weaknesses that contribute to
a comprehensive evaluation. Decision Trees are chosen for their inherent simplicity and ease
of interpretability, making them a valuable baseline for understanding model decisions. KNN
is included to represent instance-based learning methods, providing insights into how similarity
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measures impact detection performance. LightGBM and XGBoost are selected due to their
proven efficiency and accuracy in handling large datasets and complex feature interactions,
making them ideal for high-performance comparisons. Logistic Regression offers a linear per-
spective, useful for understanding how well simple linear relationships can capture malware
patterns. Random Forests, with their ensemble approach, demonstrate the power of combining
multiple decision trees to enhance predictive accuracy and robustness. SVM are included for
their effectiveness in high-dimensional spaces, highlighting the impact of margin maximization
on classification tasks.

Given the large feature set in our dataset, we applied PCA for dimensionality reduction
to enhance computational efficiency and model performance. Consequently, we evaluated the
performance of these models both with and without the application of PCA. We also tested
the models on both binary and multiclass classification tasks to comprehensively assess their
effectiveness across different types of classification problems.

To evaluate the performance of these models, several key metrics are utilized: accuracy
measures the proportion of correctly classified instances; precision assesses the accuracy of the
positive predictions; recall indicates the ability to identify true positive instances; F1 score
provides a balance between precision and recall; and the Receiver Operating Characteristic
Area Under the Curve (ROC AUC) measures the overall ability of the model to distinguish
between classes; and training time, which evaluates the computational efficiency of each model.

4.5 Explainable AI Methods

Integrating explainability into our approach, we aimed to make our machine learning models for
detecting obfuscated malware more transparent and interpretable. To achieve this, we utilized
SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016). These techniques enabled us
to comprehend and interpret the decisions made by sophisticated models, fostering transparency
and trust.

Derived from cooperative game theory, SHAP values offer a unified measure of feature im-
portance. They illustrate how each feature contributes to the prediction by averaging over all
possible feature combinations. SHAP maintains three core properties: local accuracy, missing-
ness, and consistency. Local accuracy ensures that the sum of feature attributions equals the
model output for each instance. Missingness guarantees that features absent from the model do
not affect the output. Consistency ensures that if a feature’s contribution increases or remains
the same when the model changes, its attribution does not decrease. Various methods, such as
Kernel SHAP, can be used to approximate SHAP values for different model types (Lundberg
and Lee, 2017).

The SHAP value formula is given in Equation 1:

φi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (1)

In this formula, φi represents the SHAP value for feature i, S is a subset of all features N
excluding i, f(S ∪ {i}) denotes the prediction including feature i in subset S, and f(S) is the

prediction without feature i. The term |S|!(|N |−|S|−1)!
|N |! is a weighting factor based on the subset

size.

LIME interprets classifier predictions by locally approximating them with a simpler model.
It perturbs the data around the instance to be explained and fits a straightforward, interpretable
model (such as linear regression) on these perturbed samples. This local model offers insights
into how each feature affects the prediction in the vicinity of the instance. LIME balances the
need for interpretability with fidelity to the original model (Ribeiro et al., 2016).

The formula for the LIME explanation model is presented in Equation 2:
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ξ(x) = arg min
g∈G

∑
z∈Z

πx(z) (f(z)− g(z))2 + Ω(g) (2)

In this equation, ξ(x) is the explanation model for the instance x, g ∈ G represents a family
of interpretable models, πx(z) is a proximity measure between z and x, f(z) is the prediction of
the complex model, and g(z) is the prediction of the interpretable model. The term Ω(g) serves
as a regularization term to ensure the simplicity of the explanation model.

5 Results

5.1 Performance Assessment of Models with and without PCA

After assessing the performance of machine learning models trained with default parameters
and utilizing all available features, LightGBM emerged as the top performer among the models
evaluated, demonstrating superior performance in malware detection tasks. We also explored the
application of PCA to reduce the dimensionality of our feature space while preserving as much
information as possible. Specifically, we limited the feature set to 25 principal components and
evaluated the impact on the performance of our machine-learning models for malware detection.

Comparing the results of models before and after applying PCA with 25 components are
presented in Table 3 and Table 4. We evaluated the models on both binary and multiclass
datasets. While LightGBM and Random Forest maintain their positions as top performers
in both scenarios, there are noticeable efficiency improvements. Specifically, the training time
for these models has decreased compared to the previous scenario. Decision Tree and Logistic
Regression models exhibit slight decreases in accuracy after PCA, emphasizing the trade-off
between dimensionality reduction and model performance. Notably, SVM’s accuracy sees a
considerable drop, highlighting the sensitivity of specific models to feature reduction. Overall,
PCA enhances efficiency without significant compromise in performance for most models, with
LightGBM and Random Forest continuing to excel in malware detection tasks.

Table 3: Multiclass Models Performance with All Features and After Applying PCA

Model Time Accuracy Precision Recall F1 Score ROC AUC

All Features

Decision Tree 1m 48s 0.72 0.74 0.72 0.72 0.94
KNN (k=5) 1m 2s 0.84 0.84 0.84 0.84 0.96
LightGBM 2m 33s 0.90 0.90 0.90 0.90 0.99
Logistic Regression 4m 35s 0.74 0.74 0.72 0.72 0.95
Random Forest 2m 58s 0.89 0.89 0.89 0.89 0.99
SVM 33m 59s 0.72 0.76 0.70 0.68 0.95
XGBoost 3m 38s 0.85 0.86 0.86 0.86 0.98

After Applying PCA

Decision Tree 14s 0.66 0.68 0.65 0.65 0.91
KNN (k=5) 41s 0.83 0.83 0.83 0.83 0.95
LightGBM 34s 0.86 0.86 0.85 0.86 0.98
Logistic Regression 52s 0.59 0.63 0.56 0.54 0.90
Random Forest 48s 0.86 0.86 0.86 0.86 0.98
SVM 3m 9s 0.56 0.60 0.53 0.52 0.90
XGBoost 32s 0.81 0.82 0.81 0.81 0.97

5.2 Interpretability analysis

In this section, we focus on interpreting the predictions of the LightGBM model, a booster
algorithm known for its complex design and high predictive performance in malware detection
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Table 4: Binary Models Performance with All Features and After Applying PCA

Model Time Accuracy Precision Recall F1 Score ROC AUC

All Features

Decision Tree 1m 5s 0.96 0.63 0.92 0.75 0.97
KNN (k=5) 15m 4s 0.99 0.94 0.85 0.89 0.96
LightGBM 1m 19s 1.00 0.97 0.96 0.96 1.00
Logistic Regression 7m 48s 0.97 0.79 0.72 0.76 0.97
Random Forest 1m 20s 0.99 0.94 0.96 0.95 1.00
XGBoost 1m 20s 0.99 0.94 0.91 0.93 1.00
SVM 25m 56s 0.95 0.65 0.58 0.61 0.94

After Applying PCA

Decision Tree 15s 0.97 0.73 0.78 0.75 0.96
KNN (k=5) 47s 0.98 0.95 0.80 0.87 0.97
LightGBM 23s 0.99 0.95 0.90 0.93 0.99
Logistic Regression 2m 19s 0.96 0.65 0.86 0.74 0.94
Random Forest 1m 35s 0.99 0.94 0.90 0.92 0.99
SVM 9m 38s 0.96 0.70 0.59 0.64 0.94
XGBoost 29s 0.99 0.92 0.87 0.90 0.99

tasks. We start by analyzing the importance of features to understand which features signif-
icantly influence the model’s predictions. Subsequently, we employ SHAP and LIME to gain
deeper insights into the decision-making process of the LightGBM model.

Feature importance provides a quantitative measure of the relative importance of each feature
in making predictions. The LightGBM model inherently provides feature importance scores
based on how useful each feature is in reducing impurity across all trees in the ensemble. Features
like time datestamp, characteristics, checksum, etc., are identified by the LightGBM model,
which is crucial for distinguishing between malware and benign software. The top 20 features
have been shown in Figure 2.

Figure 3 shows the SHAP summary plot for the spyware class.

The SHAP force plot in Figure 4 explains how each feature contributes to the LightGBM
model’s prediction for a specific instance in a multiclass classification scenario. The plot visual-
izes how various features influence the model’s output, pushing it towards different classes, with
higher values indicating a stronger tendency towards a particular class.

The SHAP force plot depicted in Figure 4 provides a detailed visualization of how each
feature contributes to the model’s prediction for a particular instance. The base value, shown at
the center of the plot, represents the average model output over the training dataset, essentially
reflecting what the model would predict if no features were present. In this instance, the base
value is set at 0, and the model’s final prediction is -6.60, indicated at the central point labeled
as ”f(x) = -6.60.”

Features contributing to increasing the model’s prediction are represented by the red arrows
on the left, pushing the prediction higher from the base value, while features contributing to
decreasing the prediction are represented by the blue arrows on the right, pulling the prediction
lower. The length of each arrow reflects the magnitude of the feature’s impact. In this plot,
”SizeOfImage” and ”TimeDateStamp” are the features pushing the prediction higher with con-
tributions of 0.27 and 0.64, respectively, while ”msvbvm60.dll” is a feature pulling the prediction
lower with a contribution of -2.91.

This visualization helps in understanding the relative importance and effect of each feature
in the prediction process, thereby enhancing model interpretability. By illustrating how specific
features influence the output, SHAP summary plots provide valuable insights into the decision-
making process of complex machine learning models, ensuring transparency and fostering trust
in the model’s predictions.

The image presented in Figure 5 shows the results of a malware detection model that clas-
sifies a sample into various malware categories, including Spyware, SnakeKeyLogger, RAT (Re-
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Figure 2: Top 20 features of LightGBM model

Figure 3: SHAP summary plot for spyware class.
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Table 5: Comparison of Other Malware Detection Approaches

Author Dataset Type
Extracted
features

Result
Strengths and

Limitations

Shukla et
al. (2019)

19 612
samples (14

599 malware)
with 75
features

binary PE header 95% accuracy

Unable to predict
malware family, not

robust to
obfuscation, lack of

robustness

Aurangzeb
& Aleem
(2023)

142 128
samples (70

127 malware)
with 289
features

binary
System calls,
static features

93% on emulator
94% on real

without
obfuscation 91%
on emulator as
well as on real

with obfuscation

Dataset is old,
unable to predict
malware family,

robust to
obfuscation

Islam et al.
(2020)

123 453
samples (5

560 malware)
binary opcodes 97% accuracy

Dataset is old,
unable to predict

malware family, not
robust to

obfuscation, lack of
robustness

Our work

29 499
samples (7

classes) with
1 562 features

binary,
multiclass

DLL, API,
PE header,
PE sections

binary - 96%
f1-score

multiclass - 90%
f1-score

binary and malware
family prediction,

resilient to
obfuscation methods

Figure 4: SHAP force plot.

mote Access Trojan), BankingTrojan, and others. The model predicts with high confidence

Figure 5: Interpreting Model Predictions with LIME

(83%) that the sample is Spyware. The probabilities for other categories are much lower, with
SnakeKeyLogger at 13%, RAT at 3%, and both BankingTrojan and Other at 0%.

The bar chart in the middle indicates the contribution of different features to the model’s
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decision, highlighting the impact of each feature on predicting whether the sample is Spyware
or NOT Spyware. Features contributing to the Spyware classification include AddressOfEn-
tryPoint, SizeOfCode greater than -0.01, SizeOfInitializedData less than a certain threshold,
rsrc PointerToRawData, rsrc VirtualAddress less than -0.20, SizeOfImage less than -0.21, and
rsrc Misc VirtualSize less than -0.22.

On the other hand, features indicating the sample is NOT Spyware include TimeDateS-
tamp less than -0.08, rsrc SizeOfRawData less than -0.21, and CheckSum less than or equal
to -0.03. The table on the right lists the actual values of these features, which are: Addres-
sOfEntryPoint at 0.01, SizeOfCode at -0.01, SizeOfInitializedData at -0.03, TimeDateStamp
at -0.03, rsrc PointerToRawData at 0.23, rsrc VirtualAddress at -0.15, rsrc SizeOfRawData at
-0.22, SizeOfImage at -0.19, rsrc Misc VirtualSize at -0.22, and CheckSum at -0.03.

The comparison of different malware detection approaches is presented in Table 5. This
table provides a concise overview of various datasets, classification types, feature extraction
methods, results, and the strengths and limitations of each approach, including our work. Al-
though our detection rate is slightly lower, our method is resilient to obfuscation techniques
and capable of predicting malware families, demonstrating its robustness and practicality for
real-world applications.

6 Conclusions and Future works

In this paper, we have explored machine learning techniques for malware detection, bridging the
gap between feature engineering, model selection, and evaluation metrics. Our study highlights
their critical roles in enhancing the accuracy and effectiveness of malware detection systems.
We also examined practical aspects such as data preprocessing, model training, and deployment
considerations, highlighting the challenges faced in real-world scenarios.

Our experimental results demonstrate that the LightGBM model consistently outperforms
other algorithms in terms of accuracy, precision, recall, and F1 score. We evaluated the models on
both binary and multiclass datasets and applied PCA to reduce the dimensionality of our feature
space while preserving as much information as possible. Specifically, we limited the feature set
to 25 principal components and assessed the impact on the performance of our machine learning
models for malware detection. Comparing the results before and after applying PCA revealed
noticeable efficiency improvements, particularly in training time, without significant compromise
in performance for most models.

Feature importance analysis and interpretability techniques like SHAP and LIME provide
valuable insights into the model’s decision-making process, making it easier to understand and
trust its predictions.

Addressing the challenges of deploying ML models in real-world environments is critical
and involves dealing with issues like data drift and adversarial attacks and maintaining model
performance over time. Another important direction is developing more scalable and efficient
models that can handle large volumes of data in real-time without compromising accuracy.
This suggested direction includes optimizing algorithms for faster training and inference times.
Enhancing the diversity and quality of datasets used for training and evaluation is crucial.
Incorporating more varied malware samples and benign applications from different environments
will improve the generalizability of detection models.
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